

Self-consistent design considerations for commercial laser fusion energy

IFE Workshop, LLNL, 16 Nov 2021

Prof. Mike Dunne, Stanford University, on behalf of the LIFE team (2008-2014) mike.dunne@stanford.edu

The LIFE program integrated the work of a team of national labs, universities, industry and end-users

LLNL Integrated plant & laser design

LANL Tritium systems technology

SRNL Tritium plant manufacturing and operations

PPPL Gas handling system

GA Target injection and manufacture

UIUC Fusion chamber response

UCSD Target survival and chamber design

U Wisconsin Chamber design

Structural materials **NPS**

Berkeley

A broad group of end-users were consulted to determine the operational requirements for IFE

Utility requirements

LIFE advisory board formed by CEO / COO / CNOs from:

- Exelon
- Dominion
- Entergy
- Mid America
- Pinnacle West
- PG&E
- Southern Company
- Wisconsin Energy
- SSEB

Industry partnerships

Power Plant Vendors

Laser diode vendors

Laser and optics vendors

A&E construction firms

Gas processing

Remote Handling

Control Systems

Petrochemical industry

Environment, policy, economics

Environmental and Sustainability groups

• EDF, BTI, GCEP, SERI, ...

Nonproliferation

NTI, CSIS, Belfer, CGSR

International

• JP, EU, CA, KR, RU, CN, Gulf states, ...

Policy and Economics

- Bipartisan Policy Center
- Howard Baker Forum
- Oxford Economics
- Pillsbury, Patton-Boggs

Top level requirements: moving from physics and concepts to integrated solutions for the energy sector

Plant Primary Criteria (partial list)

Cost of electricity

Rate and cost of build

Licensing simplicity / predictability

Acceptable waste stream

Meet urban environmental and safety standards (minimize grid losses)

Reliability, Availability, Maintainability, Inspectability (RAMI)

High capacity credit & load factor

Predictable shutdown & quick restart

Materials availability for a large fleet

Factory built systems

Conventional O&M personnel

Timely delivery & upgradeability

Addressing the end-user requirements 1/5: High assurance of performance

Addressing the end-user requirements 2/5: Fuel system delivery

Driver: Onsite Tritium inventory **Design:** Wetted foams (no layering)

From: R. Olsen et al (LANL)

Driver: Fuel integrity

Design: Thermo-mechanical shields

Driver: Chamber compatibility
Design: Pb hohlraum (no plating), Xe gas
(ion, X-ray ranging) and Oxygen (exhaust)

Lead
Hohlraum
P2 shield
Carbon
Capsule
Foam
Membranes

Driver: Reliable injection & engagement **Design:** Glint triggers and steers the lasers

Addressing the end-user requirements 3/5: Chamber performance, survival and deployability

Addressing the end-user requirements 4/5: Attractive safety basis

Driver: Class-A waste stream **Design**: Low activation steel design

"LIFE-12" RA-FM steel Waste Disposal Rating < 0.1

Addressing the end-user requirements 5/5: Plant economics & concept of operations

Driver: High availability for baseload Design: Hot swappable lasers & optics

Current simulation fine:

| Supers | Super

Together, we need to assemble an integrated technical development plan that retires risk and ensures self-consistency

ssues		Consequence	I	- 1		
Fusion I	Physics	consequence	Current	SG1 Criteria	SG2 Criteria	SG3 Criteria
usioni	Gain >60	м	Current	JOI CIRCIII	JGZ CIREIIA	JOJ CIRCIII
	On-the-fly ignition	н				
	> ~99% probability of ignition	м				
	Target materials compatibilities	н				
usion 1	Targets	-	Current	SG1 Criteria	SG2 Criteria	SG3 Criteria
usion	DT layer in production environment	н	current	JOZ CHCCHI	o de criceria	5 do Citteria
	Target survival: injection, flight	н				
	Mass manuf: 400M/yr, <\$1	н				
	Tritium Inventory-Target Filling	м				-
ritium	Fuel Cycle	- In	Current	SG1 Criteria	SG2 Criteria	SG3 Criteria
main	Tritium Breeding Ratio	н	Current	JOI CIRCII	JOZ CIRCIII	303 CIRCII
	Recovery from Li	н				
	Recovery from Xe	н				
arget I	njection and Tracking	T .	Current	SG1 Criteria	SG2 Criteria	SG3 Criteria
ageti	Accurate and repeatable in fusion env	н	Current	301 Circena	JGZ CIICEIIA	3G3 CIICEIIA
	Injector reliability in fusion env	M				
	Target survival in injector (fusion env)	Н				
	Injector availability	M				
	Target tracking in fusion env	н				
acar Eu	Ision Driver	"	Current	SG1 Criteria	SG2 Criteria	SG3 Criteria
aserru	Rep-rate operation	н	current	301 Citteria	3GZ Criteria	303 Criteria
	Final optic survival	н				
		i i				
	Electrical efficiency	Н				_
	Target engagement	н		_		_
	Focal spot consistent with LEH					
	Laser system availability	м		0.04.0.1	e en e la -l-	0.00.0.0.0
usion I	T*	l	Current	SG1 Criteria	SG2 Criteria	SG3 Criteria
	First wall radiation damage survival (FMS) 10 dpa	Н				
	First wall radiation damage survival (ODS) 50 dpa	M				
	Chamber clearing	Н				
	Debris management-from chamber outlet	Н				100
	Heat Transport - from chamber outlet	м				
	Thermal and mechanical insults	н				
	Corrosion	м				
	Chamber Design consistent with Fabrication	м				
	Availability	м				
	Concept of chamber replacement	м				
	Production capability for Chamber Materials (FMS)	м				
	Production capability for Chamber Materials (ODS)	м				
ower (Conversion Systems		Current	SG1 Criteria	SG2 Criteria	SG3 Criteria
	Tritium release through Rankine cycle	м				
icensin	ng and Regulatory		Current	SG1 Criteria	SG2 Criteria	SG3 Criteria
	Licensing strategy	н				
	Auth for initial ops	н				
	NRC license for ComOps	н				
	Regulator approval of waste streams	Н				2
ntegrat	ted Site Operations	3	Current	SG1 Criteria	SG2 Criteria	SG3 Criteria
	Concept of operations	м				
	Concept of maintenance	м				
	Personnel requirements	м				

	a Tracking				
	arate and repeatable in fusion env	Н			
	injector reliability in fusion env	М			
	Target survival in injector (fusion env)	н			
	Injector availability	М			
	Target tracking in fusion env	Н			
ser F	usion Driver		Current		
	Rep-rate operation	н			
	Final optic survival	Н			
	Electrical efficiency	L			
	Target engagement	Н			
	Focal spot consistent with LEH	Н			
	Laser system availability	М			
ısion	Engine		Current		
	First wall radiation damage survival (FMS) 10 dpa	Н			
	First wall radiation damage survival (ODS) 50 dpa	М			
	Chamber clearing	Н			
	Qebris management-from chamber outlet	Н			
	Transport - from chamber outlet	M			
	d mechanical insults	Н			

The ability to access the NIF, and the separability of many technical subsystems provides an attractive basis for a national IFE program in the US

Areas for priority technology development include...

- Tritium processing systems (from gas, liquid metals, ...)
- Target (fuel) manufacturing processes
- Coolant loop materials: corrosion, impurities, chemical reactivity, ...
- Structural materials: impurity levels for bulk production, cyclic stresses, ...
- Chamber gas/liquid chemistry (recovery, waste, clogging)
- Final Optics survival and hot-swap changeout
- Injection, tracking, engagement, and timing systems
- ... in addition to the underpinning target and driver performance developments

It is important to recognize the scale and connectivity of the technical challenges ahead ...

- Over a dozen integrated IFE power plant design studies have been performed.
- Along with a wide range of individual technology development activities.
- Many areas of commonality with MFE, HEDS, and commercial applications.
- Any new IFE program should balance the need for breadth and innovation with the imperative for rigorous self-consistency of design solutions.

Inertial Confinement Fusion Power Plants

Mike Dunne^a, Tom Anklam^b, *, and Wayne Meier^b, *, *SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, United States: *Lawrence Livermore National Laboratory, Livermore, CA, United States

© 2021 Esevier Inc. All rights reserved.

Table 1 Key fusion engine parameters.

	Year	Driver energy, MJ	Driver eft., %	Target gain	Target yield, MJ	Pulse rate, Hz	Fusion power, MW	Chamber first wall material	Chamber structural material	Breeding material
Heavy ion beam drive	n									
Osiris	1992	5.0	28.2	86.5	432	4.6	1987	C fabric	C	FLiBe
Prometheus-H	1992	7.0	18.5	103	719	3.54	2543	SIC	SIC	Li ₂ 0
HYLIFE-II	1994	5.0	35	70	350	6.0	2100	Steel	Steel	FLIBe
Laser driven Sombrero	1992	2.4	7.5	440	400	6.7	2677	SiC	SIC	11.0
		3.4	7.5	118		6.7				Li ₂ 0
Prometheus-L	1992	4.0	6.5	124	497	5.65	2807	SIC	SIC	Li ₂ 0
LIFE	2011	2.2	15.8	60	132	16.7	2200	Steel	Steel	Li
Z-pinch driven										
Z-IFE (10 chambers)	2006	30	15	100	3000	0.1	3000	Steel	Steel	FLiBe

Table 2 Key power plant parameters.

	Primary coolant	Primary coolant Tmax, C	Plant eff., %	Thermal power, MWt	Gross electric power, MWe	Driver power, MWe	In-plant power, MWe	Net electric power, MWe	Plant gain
Heavy ion beam	driven								
Osiris	FLiBe	650	45	2504	1127	82	45	1000	7.9
Prometheus-H	Pb & He	525 (Pb) 650 (He)	42.7	2780	1189	137	53	999	5.3
HYLIFE-II Laser driven	FLiBe	650	43	2500	1075	85	50	940	7.0
Sombrero	He + Li ₂ 0	700	47	2891	1359	304	55	1000	2.8
Prometheus-L	Pb & He	525 (Pb) 650 (He)	42.3	3264	1382	349	61	972	2.4
UFE Z-Pinch driven	Li	575	47	2640	1217	248	64	905	2.9
Z-IFE	FLiBe	680	43	3572	1536	200	71	1264	4.7

National Academies (2013) Conclusion 4-13, "The appropriate time for the establishment of a national, coordinated, broad-based inertial fusion energy program within DOE would be when ignition is achieved."

The LIFE team at LLNL (circa 2011)

References

- M. Dunne, T. Anklam, W. Meier, "Inertial Confinement Fusion Power Plants", Encyclopedia of Nuclear Energy, Elsevier, https://doi.org/10.1016/B978-0-12-819725-7.00170-7 (2021)
- M. Dunne, et al., "Timely Delivery of Laser Inertial Fusion Energy", Fusion Science and Technology 60, 19-27 (2011)
- A. Bayramian, et al., "Compact, efficient laser systems required for laser inertial fusion energy", Fusion Science and Technology 60, 28-48 (2011)
- P. Amendt, et al., "LIFE pure fusion target designs: status and prospects", Fusion Science and Technology 60, 49-53 (2011)
- J. Latkowski, et al., "Chamber design for the laser inertial fusion energy (LIFE) engine", Fusion Science and Technology 60, 54-60 (2011)
- R. Miles, et al., "Challenges surrounding the injection and arrival of targets at LIFE fusion chamber center", Fusion Science and Technology 60, 61-65 (2011)"

